#### **Matteo ROSSI**

Politecnico di Torino

# Cryptography 2





#### License & Disclaimer

#### License Information

This presentation is licensed under the Creative Commons BY-NC License



To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

#### Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.





### Obiettivi

- Comprensione del problema dello scambio delle chiavi
- Comprensione dei concetti base di teoria dei numeri
- Comprensione base del funzionamento degli schemi Diffie-Hellman e RSA
- Comprensione base dei concetti di funzione di Hash, MAC e firma digitale





### Prerequisiti

- Encoding e conversioni
- Matematica di base
- Modulo CR\_1 Cryptography 1





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





### Problema dello scambio delle chiavi

Ora che sappiamo come cifrare dei messaggi, la domanda naturale è: come facciamo a trasmettere le chiavi?





### Problema dello scambio delle chiavi

Ora che sappiamo come cifrare dei messaggi, la domanda naturale è: come facciamo a trasmettere le chiavi?

Idea: ogni coppia di persone si scambia fisicamente una chiave e la utilizza per ogni comunicazione





- Idea migliore: utilizzare un Trusted Third Party (TTP)
  - Un server centrale che ha una chiave condivisa con ogni persona





- Idea migliore: utilizzare un Trusted Third Party (TTP)
  - Un server centrale che ha una chiave condivisa con ogni persona
  - Quando Alice e Bob vogliono comunicare, il server genera una chiave, che manda ad Alice e Bob cifrata con le rispettive chiavi condivise





- Idea migliore: utilizzare un Trusted Third Party (TTP)
  - Un server centrale che ha una chiave condivisa con ogni persona
  - Quando Alice e Bob vogliono comunicare, il server genera una chiave, che manda ad Alice e Bob cifrata con le rispettive chiavi condivise
  - Alice e Bob iniziano a comunicare senza più passare dal server





- Un TTP ha senso in ambienti chiusi (università o aziende)
- > Se il TTP smette di funzionare nessuno può più comunicare
- > Se il TTP viene attaccato, tutte le chiavi vengono esposte





### Scambio delle chiavi

Possiamo allora fare uno scambio di chiavi sicuro e "online"?





### Scambio delle chiavi

- Possiamo allora fare uno scambio di chiavi sicuro e "online"?
  - Merkle Puzzles
  - Diffie-Hellman
  - > RSA





### Merkle Puzzles

- Protocollo ideato da Ralph Merkle nel 1974
- Basato sull'utilizzo dei block cipher per scambiare le chiavi
- Di difficile utilizzo pratico





#### Merkle Puzzles

#### Idea:

- Alice e Bob si accordano su un cifrario a blocchi
- Alice manda una serie di "puzzle" a Bob
- > Bob ne sceglie uno, e manda ad Alice una parte della soluzione
- La parte della soluzione non mandata da Bob è la chiave condivisa
- Un attaccante deve risolvere tutti i puzzles per trovare la chiave che i due hanno scelto





### Merkle Puzzles – Esempio

#### Esempio:

- Alice e Bob scelgono di usare AES-128
- Alice sceglie  $2^{32}$  chiavi del tipo  $0 \dots 0 || P_i \operatorname{con} P_i \operatorname{di} 32 \operatorname{bit}$ , e cifra  $2^{32}$  messaggi del tipo "Soluzione  $x_i || y_i$ ",  $\operatorname{con} x_i \operatorname{e} y_i$  interi random di 128 bit
- Bob sceglie uno dei messaggi e prova tutte le possibili chiavi ( $2^{32}$  valori di  $P_i$ )
- > Quando trova un messaggio che inizia per "Soluzione" manda indietro  $x_i$  e Alice saprà cha  $y_i$  sarà la chiave condivisa





### Merkle Puzzles – Esempio

- Esempio:
  - Un attaccante che vede tutti i puzzle e la risposta di Bob non sa quale di questi ha risolto
  - ➤ Deve provare tutti i puzzle: 2<sup>64</sup> tentativi





#### Merkle Puzzles – Problemi

#### Problemi:

- Scambiarsi una chiave è troppo costoso
- > Il "gap" tra  $2^{32}$  e  $2^{64}$  è quadratico, vogliamo qualcosa di meglio: un gap esponenziale (es. n e  $2^n$ )





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





### Congruenze

- > Dati tre interi a, b, n diciamo che a è congruo a b modulo n ( $a \equiv b \mod n$ ) se (equivalentemente):
  - $\rightarrow a b$  è divisibile per n
  - $\rightarrow a$  e b danno lo stesso resto se divisi per n





### Congruenze – Esempi

- $\rightarrow$  32  $\equiv$  7 mod 5
  - > 32 7 = 25 divisibile per 5 (25/5 = 5 resto 0)
  - > 32 / 5 = 6 resto 2 e 7 / 5 = 1 resto 2





### Congruenze – Esempi

- $\rightarrow$  32  $\equiv$  7 mod 5
  - > 32 7 = 25 divisibile per 5 (25/5 = 5 resto 0)
  - > 32 / 5 = 6 resto 2 e 7 / 5 = 1 resto 2
- > 91  $\neq$  18 mod 3
  - > 91 18 = 73 non divisibile per 3 (73 / 3 = 24 resto 1)
  - > 91/3 = 30 resto 1 e 18/3 = 6 resto 0





### Congruenze

- Proprietà:
  - $\Rightarrow a \equiv a \mod n$
  - $\Rightarrow a \equiv b \mod n \Rightarrow b \equiv a \mod n$
  - $a \equiv b \mod n \in b \equiv c \mod n \Rightarrow a \equiv c \mod n$





# Congruenze

- ightharpoonup Se  $a \equiv a' \mod n$  e  $b \equiv b' \mod n$  allora:
  - $\Rightarrow a + b \equiv a' + b' \mod n$
  - $> ab \equiv a'b' \mod n$
  - $> ka \equiv ka' \mod n$  per qualsiasi k intero
  - > Nota: questo non vale per la divisione





### Inverso moltiplicativo

- > Teorema di Bézout:
  - $\rightarrow$  dati a e n con MCD(a, n) = 1
  - $\triangleright$  esiste un unico intero b tale che  $ab \equiv 1 \mod n$
- Indichiamo questo intero con  $a^{-1}$  e lo chiamiamo *inverso* moltiplicativo di a





### Funzione di Eulero

> Definiamo  $\varphi(n)$  come il numero di interi k tra 1 e n tali per cui  $\mathrm{MCD}(k,n)=1$ 





#### Funzione di Eulero

> Definiamo  $\varphi(n)$  come il numero di interi k tra 1 e n tali per cui  $\mathrm{MCD}(k,n)=1$ 

> Teorema di Eulero: dati a e n con MCD(a,n) = 1, allora:  $a^{\varphi(n)} \equiv 1 \mod n$ 





### Funzione di Eulero - Proprietà

- $\varphi(1) = 1$
- $\varphi(p) = p 1$  se p è un numero primo
- $\varphi(p^k) = (p-1)p^{(k-1)}$  se p è un numero primo
- $\varphi(pq) = (p-1)(q-1)$  se p e q sono numeri primi distinti





# Funzione di Eulero - Proprietà

- $\varphi(1) = 1$
- $\varphi(p) = p 1$  se p è un numero primo
- $\varphi(p^k) = (p-1)p^{(k-1)}$  se p è un numero primo
- $\varphi(pq) = (p-1)(q-1)$  se p e q sono numeri primi distinti
- In generale:  $\varphi(ab) = \varphi(a)\varphi(b)$  se MCD(a,b) = 1





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





### Problemi facili e difficili

- Informalmente possiamo distinguere i problemi di teoria dei numeri in due tipologie:
  - Problemi "facili": problemi risolvibili con algoritmi efficienti
  - Problemi "difficili": problemi per i quali non si conoscono algoritmi efficienti





### Problemi difficili

- Alcuni "problemi difficili" sono il cuore della crittografia moderna:
  - Facili da formulare
  - Impossibili da risolvere in pratica
  - > Hanno un "problema facile" corrispondente
  - Permettono di creare schemi con dimostrazioni di sicurezza "forti"





### Esempio: fattorizzazione

- Problema facile: prodotto di numeri (primi)
- $\rightarrow$  Es:  $13 \times 7 = 91$
- In generale  $\approx n \log(n)$ operazioni per due interi a n cifre

- Problema difficile: fattorizzazione
- $\triangleright$  Es:  $91 = ? \times ?$
- In generale sono necessarie  $\approx e^{\sqrt[3]{n}}$  operazioni per fattorizzare numeri a n cifre





### Esempio: fattorizzazione

- In pratica, nel caso della fattorizzazione di prodotti di due primi della stessa dimensione:
  - $\triangleright$  Per fattorizzare interi a 1024 bit sono necessarie circa  $2^{70}$  operazioni
  - > Per interi a 2048 bit sono necessarie circa 290 operazioni
  - L'attuale record di fattorizzazione (al 2020) è di 829 bit





### Esempio: logaritmo discreto

- Problema facile: elevamento a potenza modulare
- ightharpoonup Es:  $13^7 \equiv 9 \mod 23$
- In generale  $\approx nk\log(n)$ operazioni necessarie per un intero a n cifre e un esponente a k bit

- Problema difficile: logaritmo discreto
- $\rightarrow$  Es:  $9 \equiv 13^? \mod 23$
- In generale,  $\approx e^{\sqrt[3]{n}}$  operazioni per un modulo a n cifre





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





# "We stand today on the brink of a revolution in cryptography."

Whitfield Diffie and Martin Hellman, "New directions in Cryptography",
November 1976





- Pubblicato nel 1976
- Basato sul problema del logaritmo discreto
- In grado di dare un "gap" esponenziale tra la complessità per gli utenti e quella per gli attaccanti





- Step 1 generazione dei parametri:
  - $\triangleright$  Alice e Bob scelgono un numero primo grande p
  - Alice e Bob scelgono un numero g tra 2 e p-1, detto generatore (spesso g=2)
  - Alice e Bob condividono pubblicamente questi parametri (chiunque può vederli)





- Step 2 generazione delle chiavi:
  - $\triangleright$  Alice sceglie un numero a tra 2 e p-1
  - $\triangleright$  Bob sceglie un numero b tra 2 e p-1
  - ightharpoonup Alice calcola  $A \equiv g^a \mod p$  e Bob calcola  $B \equiv g^b \mod p$





- Step 3 scambio della chiave:
  - > Alice condivide pubblicamente il valore di A
  - > Bob fa lo stesso con B
  - ightharpoonup Alice calcola  $B^a \equiv g^{ab} \mod p$  e Bob calcola  $A^b \equiv g^{ab} \mod p$
  - > Alice e Bob condividono ora una chiave





#### Esempio:

- ightharpoonup Prendiamo p=37 e g=2
- > Alice genera il numero 7 e manda  $2^7 \equiv 17 \mod 37$
- ightharpoonup Bob genera il numero 21 e manda  $2^{21} \equiv 29 \mod 37$
- Entrambi possono calcolare il numero  $2^{7 \cdot 21} \equiv 29^7 \equiv 17^{21} \equiv 8 \mod 37$
- > 8 è la chiave condivisa tra Alice e Bob





### Quanto è sicuro Diffie-Hellman?

- > Si crede che rompere Diffie-Hellman sia equivalente al recuperare uno dei numeri tra  $\alpha$  e b, ovvero all'effettuare un logaritmo discreto
- In pratica, con p di 3072-bit si raggiunge una sicurezza comparabile a quella di un block cipher a 128 bit





### Problemi

- I principali problemi di Diffie-Hellman sono:
  - Raggiungere alti livelli di sicurezza implica avere parametri molto grandi
  - A parità di dimensione, alcuni numeri primi sono più deboli di altri
  - Diffie-Hellman è vulnerabile ad attacchi attivi, come il man-inthe-middle





### Man-in-the-middle

- Un attaccante che ascolta il protocollo può:
  - > Intercettare  $g^a$  da Alice e sostituirlo con  $g^{a'}$
  - ightharpoonup Fare lo stesso con Bob, utilizzando un valore  $g^{b'}$
  - > Creare le chiavi  $g^{a'b}$  e  $g^{ab'}$  (Alice e Bob ora hanno chiavi diverse, ma non lo sanno!)
  - Decifrare ogni comunicazione, leggerla e cifrarla nuovamente con la chiave corretta





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





#### Fino ad ora...

- Alice e Bob vogliono comunicare:
  - Si accordano su un cifrario da utilizzare (es. AES-128)
  - Si scambiano una chiave (es. con Diffie-Hellman)
  - Iniziano a comunicare utilizzando il cifrario e la chiave





#### > Idea:

- Sistemi che non richiedono lo scambio di chiavi
- > Ora una chiave è una coppia di valori (e,d) legati tra loro in un qualche modo
- ightharpoonup Gli utenti condividono e pubblicamente e tengono d segreto
- ightharpoonup Chiamiamo e chiave pubblica e d chiave privata





- La chiave pubblica e viene usata, insieme a un algoritmo di cifratura E, per cifrare i messaggi
- La chiave private d viene usata, insieme a un algoritmo di decifratura D, per decifrare i messaggi
- > Il legame tra e e d, insieme alla struttura di E e D, permettono di effettuare cifratura e decifratura con chiavi diverse





- Se Alice vuole mandare un messaggio a Bob:
  - ightharpoonup Alice prende la chiave pubblica  $e_{Bob}$  di Bob
  - > Alice cifra il messaggio come  $c = E(e_{Bob}, m)$  e lo invia
  - ightharpoonup Bob può decifrare il messaggio come  $D(d_{Bob},c)$
  - > Nessun altro può decifrare il messaggio senza essere a conoscenza del valore di  $d_{Boh}$





> Abbiamo quindi risolto il problema della cifratura?





- Abbiamo quindi risolto il problema della cifratura?
- Non proprio:
  - Gli schemi a chiave pubblica spesso si basano su algoritmi poco efficienti
  - Spesso le dimensioni delle chiavi devono essere maggiori di quelle del testo da inviare, e quindi non pratiche





- A cosa serve quindi la crittografia a chiave pubblica?
  - Mandare messaggi brevi
  - Scambiare chiavi
  - Applicare firme digitali





- Pubblicato nel 1977
- Primo schema a chiave pubblica
- Basato sul problema della fattorizzazione
- Utilizzato anche per le firme digitali





- Step 1 generazione della chiave:
  - $\triangleright$  Alice genera due numeri primi grandi p e q
  - > Alice calcola N = pq e  $\varphi(N) = (p-1)(q-1)$
  - Alice sceglie un esponente pubblico e e calcola l'esponente privato  $d \equiv e^{-1} \mod \varphi(N)$
  - La coppia (N, e) è la chiave pubblica, mentre la terna (p, q, d) è quella privata





- Step 2 cifratura:
  - ightharpoonup Bob effettua la cifratura di un messaggio <math>m come  $c \equiv m^e \mod N$





- Step 3 decifratura:
  - > Alice decifra il messaggio come

$$m \equiv c^d \mod N$$

Infatti vale che:

$$c^d \equiv m^{ed} \equiv m^{k \varphi(N)+1} \equiv m \cdot (m^{\varphi(N)})^k \equiv m \mod N$$

Nota: per funzionare correttamente il sistema richiede  $MCD(e, \varphi(N)) = 1$ 





#### Esempio:

- > Scegliamo p=11 e  $q=17 \Rightarrow N=187$  e  $\varphi(N)=160$
- > Prendiamo e = 3 e calcoliamo  $d \equiv 3^{-1} \equiv 107 \mod \varphi(N)$
- > Prendiamo m=10 e calcoliamo  $c\equiv 10^3\equiv 65 \bmod N$
- ightharpoonup Per decifrare:  $c^d \equiv 65^{107} \equiv 10 \mod N$





- RSA nel mondo reale
  - $\rightarrow$  Per questioni computazionali si usa e=3 o e=65537
  - È necessario un sistema di padding
  - L'elevamento a potenza non è fatto direttamente mod N





#### Attacchi a RSA -1

- $\triangleright$  La scelta di e=3 può essere vulnerabile
  - > Low public exponent attack
- La scelta di e molto grande può essere vulnerabile
  - Wiener attack
- Due chiavi che condividono un fattore primo possono essere rotte facilmente
  - Common prime attack





#### Attacchi a RSA - 2

- Due chiavi con lo stesso modulo ma esponenti diversi possono essere vulnerabili
  - > common modulus attack
- Un gruppo di e chiavi con lo stesso esponente, ma moduli diversi, può essere vulneabile
  - Hastad broadcast attack
- Diversi tipi di oracle a prima vista "innocui" possono rompere completamente RSA
  - Blinding, padding oracle, lsb oracle





### Argomenti

- Problema dello scambio delle chiavi
- Cenni di teoria dei numeri
- Problemi facili e problemi difficili
- Scambio di chiavi Diffie-Hellman
- Crittografia a chiave pubblica e RSA
- Integrità, Autenticazione e Non-ripudio





### Recap

- Confidenzialità
- Integrità
- Autenticazione
- Non-ripudio





### Recap

- Confidenzialità
- Integrità
- Autenticazione
- Non-ripudio





#### Funzioni di hash

- Una funzione di hash:
  - $\triangleright$  Prende in input un messaggio M di lunghezza arbitraria
  - > Produce in output una stringa di lunghezza fissata H(M) detta digest (o, informalmente, hash) del messaggio
  - Nel processo non viene utilizzata nessuna chiave (chiunque può replicare il calcolo)





## Funzioni di hash crittografiche

- Una funzione di hash si dice crittografica se (informalmente):
  - > È difficile risalire a un possibile input dato un output
  - $\triangleright$  È difficile trovare delle collisioni: due messaggi  $M_1$  e  $M_2$  tali che  $H(M_1)=H(M_2)$
  - Un piccolo cambiamento nell'input comporta un grande cambiamento nell'output (effetto valanga)





## Integrità

- > Possiamo usare le funzioni di hash per garantire integrità:
  - > Inviamo insieme al messaggio anche il suo digest
  - Il ricevente riceve il messaggio e ne calcola indipendentemente il digest
  - Controllando che i due digest coincidano, il destinatario verifica che il messaggio sia rimasto integro





## Integrità

#### Problema:

- Una funzione di hash può proteggerci da errori di trasmissione casuali
- Cosa succede se un attaccante modifica volontariamente il messaggio?
  - L'attaccante modifica il messaggio
  - L'attaccante modifica opportunamente il digest
  - > Il destinatario non può accorgersi delle modifiche





### Recap

- Confidenzialità
- Integrità
- > Autenticazione
- Non-ripudio





### Message Authentication Codes

- Un Message Authentication Code (MAC) può essere visto come una funzione di hash con chiave:
  - ightharpoonup Prende in input un messaggio M di lunghezza arbitraria e una chiave K
  - > Produce in output una stringa di lunghezza fissata MAC(K, M) chiamata tag





### Message Authentication Codes

- MAC in pratica:
  - A partire da block cipher (CBC-MAC, NMAC)
  - A partire da funzioni di hash (HMAC)





### Message Authentication Codes

- MAC in pratica:
  - > Alice e Bob condividono una chiave
  - > Alice manda insieme al messaggio anche il tag
  - > Un attaccante non può modificarlo non conoscendo la chiave
  - > In questo modo garantiamo sia integrità che autenticazione





### Firme Digitali

- Informalmente: una firma digitale è l'equivalente "a chiave pubblica" di un MAC:
  - Non richiede uno scambio di chiavi
  - Utilizza una funzione di firma attraverso la chiave privata (solo il proprietario può firmare)
  - Utilizza una funzione di verifica attraverso la chiave pubblica (chiunque può verificare)





### Firme Digitali

- Pro delle firme digitali:
  - Non serve scambiare delle chiavi
  - Possiamo garantire anche il non-ripudio

- Contro delle firme digitali:
  - > Sensibilmente più lente dei MAC
  - > Hanno in generale chiavi di dimensioni maggiori





## Recap

| Primitiva      | Integrità | Authenticazione | Non-ripudio |
|----------------|-----------|-----------------|-------------|
| Hash           | Si        | No              | No          |
| MAC            | Si        | Si              | No          |
| Firme Digitali | Si        | Si              | Si          |





#### **Matteo ROSSI**

Politecnico di Torino

### Cryptography 2



